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Abstract —We derive the general equations satisfied by small vibrations of arbitrary form super-
imposed upon a finite, static deformation (not necessarily homogeneous) of an elastic body of
arbitrary anisotropy suffering an unspecified number of constraints of fully general form. Spe-
cialization is then made to a fibre-reinforced material, modelled here as an incompressible material
that is inextensible in the fibre direction. The slowness surface is a one-sheeted. centro-symmetric
surface except that two slownesses are possible for waves travelling along, or normal to, the fibre-
direction. In many of these exceptional directions the slowness surface exhibits singular behaviour
which is fully discussed. Numerical illustrations are presented.

1. INTRODUCTION

There is currently great theoretical interest in the mechanical properties of fibre-reinforced
materials, presumably because of their ever increasing application in the engineering ficld.
Here we shall study wave propagation in such materials, taking as our model that of an
incompressible tsotropic matrix reinforced by inextensible fibres. The continuum model is
therefore that of an incompressible hyperelastic solid that is inextensible in a specified
direction (the tibre direction) and in addition is transversely isotropic about that direction.
Such a material is often termed an idealized fibre-reinforeed material. Spencer (1972) has
written an excellent general account ot such materials. Weitsman (1972) and Chen and
Gurtin (1974) discussed wave propagation in materials that are inextensible but not incom-
pressible whilst Scott and Hayes (1976) appear to have been the first to consider wuve
propagation in idealized fibre-reinforced materials as presently defined.

Leaving aside the specific constraints of incompressibility and inextensibility for the
moment, we recall that the present author [see Scott (1975)] has given an account of
acceleration wave propagation in constrained clastic materials in which the constraints
assume a fully general form. In the same spirit Chadwick er al. (1985) have given an
analysis of small-amplitude waves in a homogencously prestrained elastic body suffering an
unspecified number of constraints of fully general form. In many respects we follow their
analysis here.

The first part of Section 2 is devoted to the derivation of the equations [see (11) below]
of small vibrutions of arbitrary form superimposed upon a finite, static deformation (not
necessarily homogencous) of an elastic body of arbitrary anisotropy suffering an unspecified
number of constraints of fully gencral form. This extends the work of Toupin and Bernstein
(1961), who did not include the effects of constraints, and that of Scott and Hayes (1976),
who permitted non-homogencous prestrain but considered only the idealized fibre-
reinforced material. Chadwick et al. (1983) considered fully general constraints but took
the prestrain to be homogencous. This level of generality is not, however, maintained in
the following where specialization is made to small-amplitude sinusoidal wave propagation
in a homogeneously prestrained and prestressed doubly-constrained elastic solid.

In Section 3 further specialization is made and we discuss the slowness surface of an
idealized fibre-reinforced material. For non-exceptional directions n of wave propagation
this is a one-sheeted, centro-symmetric surface with the property that any plane cross-
section containing the fibre direction a is elliptical. Waves propagating (i) parallel to, or
(i) normal to, the fibre direction are found to be exceptional in that rwo waves may
propagate in any such direction. In all cases it is shown that the two (generally distinct)
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wave speeds in an exceptional direction bound the possible wave speeds obtainable as
limiting cases of wave propagation in non-exceptional directions.
In the final section numerical illustrations of the preceding theory are discussed.

2. BASIC EQUATIONS AND PROPAGATION CONDITIONS

We consider an elastic body # which is subject to one or more internal constraints
and possesses a natural undistorted state B, and an equilibrium configuration B which is
taken as the reference state. The configuration at the current time ¢ is denoted by B, and
throughout the following is assumed to differ only infinitesimally from B at all times. The
position of a generic particle in B,. 8 and B, is denoted by X. X and x. respectively. The
assumptions that 8 is an equilibrium state and that B, differs only infinitesimally from 8
imply that

X = X(X)., X =X+zu(x, 1), (1)

where 0 < & « | and «u is the particle displacement from B to B,. The gradients of the
deformations B, — B and B, — B, are written respectively as

PN e L E L F Q)
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the last equation following from (1), and the chain rule of partial differentiation. Repeated
suflices are summed over, The notation (), is used exclusively to mean the partial derivative
A )/0x, and never &( )/Ax,. We denote the Jacobian determinants of the deformations F
and F in (2) by Jand J, respectively, and the densitics measured in 8 and B, by 4 and p,
respectively, On utilizing mass conservation in the form i = pJ, we find that

J=Ju +Ell,.,)+0(l::), p=p(l -1:u,_,)+0(::2). (3)
The internal constraints are taken in the form
JOF.X) =0, A=1,....N, (4)

and we stipulate that the number N of such constraints acting simultanecously shall satisfy
N < 5 in order that the constraints shall not fully specify the strain.

The Cauchy stress ¢ measured in 8, and the strain energy H'(F, X) per unit volume of
B, of an unconstrained body are related by

cw

1 ;
A
‘F !

o, =

It is well known that the existence of the constraints (4) in 4 gives risc to internal
forces which contribute to o a lincar combination of reaction tensors N, 4 = 1,... N,
Individually, these tensors do no work in any deformation compatible with the constraints,
from which it follows that in B,

t4) lo;'w
N =J e P A=V,

A

The total Cauchy stress a* in the configuration B, of the constrained body is then given by
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oW
¢* = ac+zxu)Nu) - j" F FT (5)
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in which

Ww* = W+Z 1(,4);‘(41
A

is an augmented strain energy. * denotes the constitutive part of the stress determined from
the strain energy W(F,.X) by

. W
67/ = J—l A Lid
i4
and the
2 = ZR) +ef N x.0). A=1.....N, (6)

are arbitrary scalar functions of position and time not directly dependent on the deformation
gradient F. The quantity &"'(X) in (6) is that part of the scalar multiplier that arises from
B. whilst £ "(x. 1) is the contribution arising from the transition from 8 to B,.

The total clastic modulus is defined by

e
dia=J 'F,.«F«' - = ‘17/A/+Z 1“)‘15}2 )
. A
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in which d° and the d'* are defined by replacing W* in (7), in turn by W and the 2. The
tensor d* has the symmetries

- -
‘ll,u = ‘Iu,,

because itis derived from the potential W* but in general it possesses no others.
From (5) we may express the total Cauchy stress a* in B, in terms of the total Cauchy
stress 6* in B by expanding ¢° and N to O(z) using (2). (3),. (6) and the definition (7)

T . . = . YiR 4
ol = G| —eu) +eldhou, + a8, +e Z NGB, (8)

A

The symmetry of (8) is not immediately apparent but may be demonstrated as follows. The
principle of objectivity requires the strain energy W and the constraint function A" to be
functions of the right Cauchy—Green strain tensor C = F'F rather than merely F. We then
find that

.o ow*
g, = 2J [:l."F/ﬁ a—éﬂ;
replaces (5). and that (7) is replaced by
d:kl = 6&”,‘/'*‘(':“ )
in which
. O F7ad 2
e =4 F L FpFicFip iCL A

It is clear from this equation that ¢* possesses all the symmetries
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(‘,7/:/ = Cl‘('h/ = ",‘.u
associated with the usual fourth-order linear elasticity tensor. Indeed, it is clear from (9)

that if there is no prestress o then d* and ¢* coincide. and that both must coincide with
the linear elasticity tensor. On substituting (9) into (8) we obtain

* __ % . 33 -4 % " 3 " LAY 2t
of = (1 —euy) +e{dhu,  + 60 u, ) +echun +e) N, .
4

and the symmetry of the Cauchy stress is now apparent.
The equations of equilibrium in & and of motion in B, are

- . _Ca}
i =0. p¥i=="
“r1

(10)

respectively. The latter may be rewritten
peti; = (0 — e )4

into which we now substitute for p and ¢ from (3). and (8). respectively. The O(1) term
in & vanishes because of (10),. We ignore O(e°) terms and cancel the factor ¢ from the O(z)
terms to obtain, after a certain amount of manipulation, the equations of motion for small-
amplitude vibrations supcrimposed upon a state of finite, static strain:

o, = {d%u )+ {Z /\7,‘,”/)'"'“} ) (1
i

A

The quantities 5, d*, @ and N are all evaluated in the configuration 8 and so may
depend upon X but not 1. Of course, the displacements u and the incremental scalar
multipliers " depend upon both X and r.

The constraints (4) apply in both 8 and B, and so by expanding them as far as the
O(z) terms we obtain the further equations

Ni}““:./=0~ A=1,... N (12)

Thus (11) and (12) constitute a set of 3+ N partial differential equations for the 3+ N
unknown functions u and ', (We do not consider initial and boundary conditions because
for the most part we shall be confining attention to sinusoidal planc waves propagating
through an unbounded material.)

Equations (11) are valid for arbitrary forms of small vibration superimposed upon an
arbitrary state of prestrain and prestress of an elastic material of arbitrary anisotropy
suffering an unspecified number of constraints of fully general form. In the particular case
of a material suffering the constraints of both incompressibility and inextensibility eqns
(11) reducc to those given by Scott and Hayes [1976, eqns (3.26)]. For an unconstrained
material eqns (11) reduce to those given by Toupin and Bernstein [1961, eqns (2.19)]. If
the prestrain and prestress are homogeneous so that 5. d*, &* and N'* are constant then
(11) reduce eqns to

pl, = J:’klukJI"l"z N:"}“ﬂf}“ (13)
A

which are the equations of Chadwick er al. [1985, eqns (3.14)).
From now on we specialize to the case of sinusoidal vibrations
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u, =p,e“"“' CREUS ﬁuv = bt ew'r '-~i—::' (14)

representing a plane wave of frequency w travelling with speed v through an infinite medium
in the direction of the unit vector n and having constant polarization p. The constants b**'
are the amplitudes of the constraint stresses. On substituting (14) into (13) and (12) and
cancelling common factors we get the propagation conditions

Q"'(n)p+r Z v""(n)h"“ = ﬁl':p. (IS)

vi¥'m)-p=0, A=1.....N, (16)

in which the symmetric acoustic tensor Q*(n) and the constraint vectors v'*'(n) are defined
by

ormy=d*nn., vV¥m)=N"n, A=1,....N. (n
'} 1 ] ) /

We define Q“(n) and Q'*'(n) by replacing d* in (17), by d° and d'*', respectively.

We now specialize to a material in which two constraints are acting. For those n such
that the two constraint vectors v and v'¥ are lincarly independent we see from (16) that
the unit polarization vector is given by

and that (15) then yields an explicit expression for the squared wave speed
prt = - Q*(ms.

If the constraint vectors fail to be lincarly independent but span a space of dimension
one then we denote by ¥(n) a unit vector that spans this pace. On writing

P=1-v(n)® v(n)
we find that (15) and (16) reduce to the eigenvalue problem

{pr’1=PQ*!p=0, v-p=0, (18)

having the same form as the propagation condition of a singly constrained material. The
eigenvalue pv® = 0 of (18), is spurious since the corresponding eigenvector p does not
satisfy (18),. The other two cigenvalues possess mutually orthogonal eigenvectors that also
satisfy (18),. These results were first derived for general constraints by the present author
[see Scott (1975), Section 8] in the context of acceleration wave theory.

For those n for which both constraint vectors vanish we see that (16) becomes redun-
dant and (15) reduces to

{pr’1-Q*(n)}p =0.

the same form as the propagation condition of an unconstrained material.

In order to model an idealized fibre-reinforced material we shall consider a material
that suffers two constraints simultaneously, namely incompressibility and inextensibility
along the fibre direction.

SAS 27:15-H
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Incompressibility
We take this constraint in the form A'"'(F) = det F—1 = 0 so that we have

;\" b = l. V‘ “{n) =N, ‘{:l‘;f = (j”é“—é,;é;*. Q‘”(ﬂ) = 0. ({9)
th

The corresponding multiplier 2'"’ may be interpreted as the negative of an arbitrary pressure
needed to maintain the constraint of incompressibihity.

fnextensihility

Let the fibres in the undeformed solid be aligned with the constant unit vector A so
that in the deformed configuration they are aligned with the fixed direction a = FA, The
constraint of inextensibility may then be written as A" (F) = Y(a-a—1) = 0, so that

N =J "a@a. v =J Ya-ma. di =J 'dq,a,

Q'7(n) =J "(a-m)°L. {20)

The multiplicr '™ may be interpreted as an arbitrary tension along the fibre needed to
maintain the constraint of inextensibility.

3OTHE SLOWNESS SURFACE OF AN TIDEALIZED FIBRE-REINFORCED MATERIAL

On specializing to an clastic material that is both incompressible and inexensible the
propagation conditions {13) and (16) become

Q' (mp —cpyn+oT (a-n)a = (Go’ = T(a-n)’)p, (21)
nep=0. (a-n)a-p) =0, (22)

in which the symbol for the multiplier @7 has been replaced by 7 in recognition of its role
as 4 tension along the fibre and the quantity " does not appear. The constants 4" and
H'* have been replaced by —p, and Ty, respectively, for similar reasons. The factor J ™' has
been omitted from certain terms since the constraint of incompressibility implies that its
vitlue is unity.

For wave propagation in any direction normal to the fibre, i.e. satisfying a*n = 0, we
see from (20}, that v/ (a} = 0 so that the two constraint vectors fail to be linearly inde-
pendent. Every direction in this plane whose normal is a constitutes an exceptional direction
for wave propagation and (22), makes no restriction on the wave polarization p. Then (18),
(21) and (22) reduce to

el —=PQ(n)lp=0, n-p=0, (23)

for all nsuch thata-n = 0 where now P =1—n®n.

For wave propagation in the fibre direction a we see from (19), and (20), that v!"(n)
and v'¥'(n) arc parallel since n = a, Then (22), and (22), both supply the same restriction
upon p and in this exceptional dircction of wave propagation (18), (21) and (22) reduce to

e’ =TI -PQ(a)}p=0, a-p=0, (24)

where Pis as in (23) but now n = a.

In all other cases, where the wave direction n is neither parallel to nor normal to the
fibre a, cqns (22) provide two independent restrictions on the wave polarization p and so
determine it uniquely, up to sign. as
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j= 2nn
P=B= aan )

From (21} we obtain the entirely explicit expression
pr’ = T(a-n)" + i Q(n)a. (26)

for the squared wave speeds in the non-exceptional directions n. The slowness surface is a
centro-symmetric surface of one sheet formed by the locus of the slowness
s=¢r7'n

for all non-exceptional n with wave speed ¢ given in terms of n by (26). On dividing (26)
by r* we see that the equation of the slowness surface may be written in the form

ﬁ = {T(l,(l,‘*'(lf,k/ﬂ,/.lk } 8,85 (27)

Consider any plane cross-section of the slowness surface (27) that contains the fibre
direction a and the origin. For all non-cxceptional n contained in this cross-section, g is a
unit normal to the cross-section and s thercfore independent of the choice of n within that
cross-section. Thus (27) represents a quadric surface for cach fixed g and so its intersection
with the plane gi-s = 0 is a plane conic section. We shall assume that the material satisfies
the condition of strong cllipticity, so that g+ Q () > 0. Howgever, this is not in general
suflicient to foree a constrained material to have positive squared wave speeds ; for example,
if 7< 0 and |77 is large cnough then the right-hand side of (26) is negative. Chen and
Gurtin (1974) have associated such values of T'in an inextensible solid with buckling modes.
In order to restrict attention to propagating modes we shall admit only those arbitrary
tensions 77 that give rise to a positive value for the squared wave speed. Since pe’ is clearly
bounded when viewed as o tunction of n (and huas been restricted to be positive), it
follows that the plane conic section in the plane gi-s = 0 is cither elliptical or circular. This
conclusion is borne out by parts (v) and (vi) of Figs 2 und 3.

Scottand Hayes (1976, Section 7) have shown that the slowness surfice of an unstrained
idealized fibre-reinforced material is necessarily ellipsoidal. Despite our conclusions in the
previous paragraph, this result does not carry over to the prestrained material, [n general,
it is only those cross-sections of the slowness surface containing the fibre direction a that
are elliptical [see parts (i)-(iit) of Figs 2 and 3 for cross-sections that are not elliptical].
Also, the directions n = +a are exceptional for the prestruined material but not for the
unstrained material,

We now discuss the exceptional directions of wave propagation,

Exceptional case (i) n=a

Let us consider the imit n — a as n varies in the cross-scection ji-s = 0 of the slowness
surface where g is any given unit vector satisfying gi-a = 0. Then (26) and (27) remain well
defined in such a limit and so (26) will return a vitlue for the squared wave speed even when
n = a. However, taking a different cross-section (i.¢. sclecting a different unit vector i such
that ji-a = 0) will in general result in a different limiting value for the squared wave speed
in the same direction n = a. This is borne out by parts (v) and (vi) of Figs 2 and 3 in which
it is seen that the two elliptical cross-sections shown cut the fibre direction a at different
points.

For wave propagation in the fibre direction. eqn (24) gives in general two distinct wave
speeds with polarizations that are orthogonal to cach other and to the fibre direction a. It
is natural to enquire about the connection between these two waves and the wave given
by (26) as n — a in any fixed plane (with normal ) that contains the fibre direction a. We
shall see in the next paragraph that the two squared wave speeds provided by (24) are in
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fact the extreme values of (26). evaluated at n = a. as the unit vector g varies over all
directions satisfying a- 4 = 0.

To prove this last assertion we contract (24), with p and attempt to extremize the
following expressions for the squared wave speed :

pro=Fpr=Tp-p+p Qap+ilp-p—1)+2a-p.

where 7 and { are Lagrange multipliers corresponding to the constraints prp = 1 and
a-p = 0, respectively. In the usual way we equate ¢F ¢p to zero:

Tp+Q(a)p+/p+la=0. (28)
and then contract in turn with p and a to obtain A= —T—p-Q(a)p = —pr® and
(= —a-*Q‘(a)p. On inserting these values of the Lagrange multipliers back into (28) we

find that (24) results. Thus the two squared wave speeds in the exceptional case n = a, given
by (24). coincide with the extrema of (26).

This property is illustrated by parts (v) and (vi) of each of Figs 2 and 3 in which the
elliptical cross-section cuts the direction n = a at or between the two horizontal bars which
themselves indicate the two slownesses corresponding to the eigenvalues of (24).

We are now in a position to determine the nature of the slowness surface in the vicinity
of the singular exceptional direction n = a. To this end we rewrite (26) as

et o= T Ten) o, +dsn,n i (29)
and permit the wave direction n to describe i cone about the fibre direction with semi-apex
angle & satisfying 0 < d « 1. The quantity within braces in (29) s then equal to 7, +
i+ O0) and so varies very little as this cone is deseribed whereas the unit vector g
describes the unit circle a<gi = 0. Consequently, ¢ ' deseribes an cllipse and the slowness
s = r 'nvaries rapidly as this cone ol small apex angle is described, even though nitself
varies very little. Theslownesss = ¢ 'nlollows curve C on Fig. 1, approaching the slowness
corresponding to cach etgenvalue of (24) - the maximum and minimum slownesses —
exactly twice in one circuit.

Exceptional cuse (1) an=1(

In addition to the exceptional direction of propagation n = a, each cross-section
irs = 0 (where jiis, as before, a given unit vector such that a« i = 0) of the slowness surface
(27) contains two further exceptional directions of propagation and these satisfy a*n = 0;
they are n = +4 A a. They share the same squared wave speed given by (26), so that as
n— +a A athrough directions lying in the cross-section gi+s = 0 the limiting squared wave
speed given by (26) is approuached in o continuous manner. However, this imiting wave
speed does not in general coincide with either of the wave speeds predicted by (23) for
the exceptional directions n of propagation satisfying a-n = 0. However, we may use the

Fig. I. The slowness surtice of an incompressible, inextensible material nearn = a.
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methods of the previous sub-section to show that for each n such that a-a = 0 the limiting
squared wave speed given by (26) lies between the two eigenvalues of (23).

These phenomena are illustrated in part (iv) of each of Figs 2 and 3 where the broken
curve representing the slowness derived from the limit of (26) lies between the two full
curves representing the two slownesses derived from the eigenvalues of (23).

4. NUMERICAL ILLUSTRATIONS

None of the theoretical results of this paper depend on the precise form of the strain
energy M which could therefore represent an incompressible, inextensible material of
arbitrary elastic anisotropy. However. it is customary to model an idealized fibre-reinforced
material as an incompressible isotropic matrix reinforced by inextensible fibres so that the
continuum model of the resulting solid is that of an incompressible material that is trans-
versely isotropic about the inextensible fibre direction. In this case the strain energy depends
only on the three invariants

j| =trC, j;=}trC‘. j}=:\'C:A.

as explained by Spencer (1972). If we make the further assumption, merely to simplify the
numerical calculations, that the fibres are sparsely dispersed throughout the matrix material
then we may disregard the dependence of B on the invariant j,.

For tllustrative purposes, then, we adopt the strain energy

W= (ji=3+c l/l —fi=3+cily - ‘) (30)

in which ¢, ¢, and ¢, are constants, If ¢y = 0, (30) represents a Mooney - Riviin material
and if also ¢, = 0, the material is neo-Hookean. As it stands, (30) is the most general form
of the strain energy ot an incompressible clastic solid if terms smaller than (4, —1)* and
(A, =14, ~ D)0 = 1,23, arcignored ; the quantitics 4, are the principal stretches of the
prestrinin,

1t is convenient to take Cartesian axes comncident with the principal axes of the left
Cauchy -Green strain tensor B = FF', so that

B=/li®i+4Aj®j+ik K,
where {i,j. k} constitutes a right-hunded orthonormal triad codirectional with the principal
axes of B. It is also convenient to order the 4, so that either 4, 4, 2 1 and 4, < 1, or 4,,
4y < land 4, > | holds true. Unless 4, = 4, = 4; = |, one of these two orderings is possible
because of the constraint of incompressibility:

;-l;-2}~3= ‘ (31)

The constraint of inextensibility may be expressed as a<B 'a = |, which on writing
a = a,i+da.j+a,k becomes

-~
<

=1 (32)

~.
N
ot weba

——. —ts
+
N R
DY
+

We now write a in terms of spherical polar coordinates with k as the polar axis so that
a, =sintcos . a,=sindsind. «, =cosl.

Then (32) yiclds the following expression for ) in terms of ¢ and the principal stretches :
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l
- =
- 23
$in“t) = — — . (33)
cos” ¢ sin- t

If the 4, are ordered as in the previous paragraph then for any value of ¢ it can be shown
that (33) defines a real angle § satisfying 0 < 0 < n,2.

The predeformation and the inextensible fibre direction a are uniquely specified if 4,.
A (satisfying 4,. 4. < 1 or 4. 4, > 1) and ¢ are specified because /4, may then be obtained
from (31) and ¢ from (33).

It is convenient to introduce the right-handed orthonormal triad (a.a’.a”} based on
the fibre direction a and defined in terms of i.j. k! by

a’ =isin¢p—jcos P,
) L . . . (34)
a"=aAna =icosllcos¢p+jcossinp—ksinb.
We now discuss the cross-sections of the slowness surfuace presented in Figs 2 and 3

for given B and a and J of the form (30).
In each figure we see six cross-sections of the same slowness surface, each containing
the origin and each drawn on the same scale. Each of the left-hand graphs, numbered (i)-

(ii), is a cross-scction containing a principal plane of B. The diagonal line, marked a”, is
I 34 » e "
] a / 8
!
[
)
!
VL s
l// ]
]
/
/
4
7
(i (iv)
k fa
ap —te
i (N,
] \\j 2
(i) (v}
k ta
a’ ﬁ\
tiif) {vil
Fig. 2. Cross-sections of a slowness surface. 4, =2 4, = Loy = Ley=Loev=0,p =060" 0 2 76,

(i) i.j plane, (1) i. k plane. (iii} j. k plane, (iv) perpendicular to a, (v) a.a’ plane, (vi) a.a” plane.
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[ 43"
i a
a’
/ i
(i)
[) k
aﬂ
i .
a’
(ii) {v)
3 ba
k P
a
(\\a”
(i) (vi)
Fig. 3. Cross sections of a slowness surtace, 4, = Ll 4, = Lo, = Ley = Loy, =0, = W 00 =63,

(1) 1. plane, (i) 1,k plane, (i) j, k plane, (iv) perpendicular to a, (v) a, 2" plane, (vi) a, 2" plane.

the projection of the fibre direction onto the cross-section depicted. This projection is, of
course, a different vector in each graph but for simplicity each has been denoted by the
same symbol a”,

Each of the right-hand graphs, numbered (iv)-(vi), is a cross-section based on
{a,a’,a"”}. Part (iv) depicts the situation in the plane whose normal is a, which is exceptional
case (i1) discussed previously. The two full curves are those supplied by the unalysis for the
exceptional case which leads 1o the eigenvalue problem (23), whilst the broken curve
represents the value of the slowness obtained by taking the limit as napproaches a direction
such that a-n = 0 of the single-sheceted slowness surface (26) valid for all non-exceptional
directions.

Parts (v) and (vi) depict cross-sections containing the fibre direction a and so the
analysis of exceptional case (i) applies. The fibre direction is aligned with the vertical axis
and the horizontal bars mark the slownesses obtained from the analysis of the exceptional
case, see (24). The curve depicted is the elliptical cross-section predicted by the analysis for
non-exceptional directions of wave propagation. In accord with the analysis for exceptional
case (i), it can be seen that the ellipse cuts the fibre direction at a different point in cach of
parts (v) and (vi) but that each point is at or between the horizontal bars obtained from
(24).
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